Official Content

Evaluates a custom model behavior (i.e. 'how well' it makes new predictions).

Parameters

Configuration

The following table resumes the configuration properties (access credentials) you must set in order to use this AI task.

  PropertyKey
ProviderType Key
Alibaba -
Amazon -
Baidu -
Google  Service Account JSON
IBM Visual Recognition Key
Microsoft Custom Vision Training Key
SAP -
Tencent -

Sample

After training your model with Mamaevs' Flowers Recognition dataset, the table below shows the evaluation made for each provider and the time it takes for processing it.

Provider Output Benchmark
Alibaba GXAI6001 - Task 'GeneXusAI.Custom.Evaluate' is unavailable (...)  N/A
Amazon GXAI6001 - Task 'GeneXusAI.Custom.Evaluate' is unavailable (...) N/A
Baidu GXAI6001 - Task 'GeneXusAI.Custom.Evaluate' is unavailable (...) N/A
Google
{
    "Score": 1,
    "Additional": [
        {
            "Key": "auPrc",
            "Value": 1
        },
        {
            "Key": "auRoc",
            "Value": 0
        },
        {
            "Key": "F1Score@000",
            "Value": 0.922
        },
        {
            "Key": "Precision@000",
            "Value": 0.915
        },
        {
            "Key": "Recall@000",
            "Value": 0.918
        },
        ...
        {
            "Key": "ConfusionMatrix[DAISY,DAISY]",
            "Value": 1
        },
        ...
        {
            "Key": "ConfusionMatrix[ROSE,ROSE]",
            "Value": 1
        }
    ],
    "Local": false
}
1299ms
IBM
{
    "Score": 0.823,
    "Additional": [
        {
            "Key": "ConfusionMatrix[TULIP,TULIP]",
            "Value": 10
        },
        ...
        {
            "Key": "ConfusionMatrix[ROSE,TULIP]",
            "Value": 2
        },
        ...
        {
            "Key": "Precision@000",
            "Value": 0.922
        },
        {
            "Key": "Recall@000",
            "Value": 0.915
        },
        {
            "Key": "FScore@000",
            "Value": 0.918
        },
        ...
        {
             "Key": "Precision@100",
             "Value": 0.4
        },
        {
            "Key": "Recall@100",
            "Value": 0.4
        },
        {
            "Key": "Precision@100",
            "Value": 0.4
        }
    ],
    "Local": True
}
156ms
Microsoft 
{
    "Score": 0.999,
    "Additional": [
        {
            "Key": "Precision",
            "Value": 1.000
        },
        {
            "Key": "PrecisionSdtDeviation",
            "Value": 0.000
        },
        {
            "Key": "Recall",
            "Value": 0.998
        },
        {
            "Key": "RecallSdtDeviation",
            "Value": 0.000
        },
        {
            "Key": "AveragePrecision",
            "Value": 1.000
        },
        {
            "Key": "AverageRecall",
            "Value": 0,998
        }
    ],
    "Local": False
}
215ms
SAP GXAI6001 - Task 'GeneXusAI.Custom.Evaluate' is unavailable (...) N/A
Tencent GXAI6001 - Task 'GeneXusAI.Custom.Evaluate' is unavailable (...) N/A

Notes

  • When you get higher score values you may fall in the Overffiting problem.
     
  • When you have Precision and Recall measures in the Additional field, the main score (Score field) will be the F1-Measure.
     
  • In case your cloud-provider does not give information about the evaluation (e.g. IBM), this task locally calculates some standard metrics once your model has been deployed. In this scenario, the Measure.Local field is set to True. Despite the fact that it does not require any credentials for making the calculations, you need to indicate the access credentials for checking the deployed status (i.e. GeneXus Cognitive API - Check procedure) and for predicting every test-data on your dataset (i.e. GeneXus Cognitive API - Predict procedure) in order to compare the true-value with the predicted-value. Also, the Evaluation task must know which model has to use (Id/Version fields), which type of model are you evaluating (Type field) because the metrics depend on it, and where is the dataset information (Dataset field with the csv file path) because the task needs to know which are the testing-data. So, your Model data type input must be fully set.
     
  • When the evaluation is locally performed and you had enabled log level in Debug mode, GeneXusAI will log the confusion matrix, outcomes, metrics and macros. For example:
    Matrix    | TULIP | SUNFLOWER | DANDELION | ROSE | DAISY
    ----------+-------+-----------+-----------+------+-------
    TULIP     |    10 |         0 |         0 |    0 |     0
    SUNFLOWER |     0 |         8 |         1 |    0 |     0
    DANDELION |     0 |         1 |         8 |    0 |     0
    ROSE      |     2 |         0 |         0 |    8 |     0
    DAISY     |     0 |         0 |         0 |    0 |     9
    
    Outcomes | TULIP | SUNFLOWER | DANDELION | ROSE | DAISY
    ---------+-------+-----------+-----------+------+-------
    TP       |    10 |         8 |         8 |    8 |     9
    TN       |    35 |        37 |        37 |   37 |    38
    FP       |     2 |         1 |         1 |    0 |     0
    FN       |     0 |         1 |         1 |    2 |     0
    POP      |    47 |        47 |        47 |   47 |    47
    P        |    10 |         9 |         9 |   10 |     9
    N        |    37 |        38 |        38 |   37 |    38
    TOP      |    12 |         9 |         9 |    8 |     9
    TON      |    35 |        38 |        38 |   39 |    38
    
    Metrics | TULIP | SUNFLOWER | DANDELION |  ROSE | DAISY
    --------+-------+-----------+-----------+-------+-------
    ACC     | 0.957 |     0.957 |     0.957 | 0.957 |     1
    ERR     | 0.043 |     0.043 |     0.043 | 0.043 |     0
    PPV (P) | 0.833 |     0.889 |     0.889 |     1 |     1
    TPR (R) |     1 |     0.889 |     0.889 |   0.8 |     1
    F0.5    | 0.862 |     0.889 |     0.889 | 0.952 |     1
    F1      | 0.909 |     0.889 |     0.889 | 0.889 |     1
    F2      | 0.962 |     0.889 |     0.889 | 0.833 |     1
    J       | 0.833 |       0.8 |       0.8 |   0.8 |     1
    TNR     | 0.946 |     0.974 |     0.974 |     1 |     1
    NPV     |     1 |     0.974 |     0.974 | 0.949 |     1
    AUC     | 0.973 |     0.932 |     0.932 |   0.9 |     1
    MCC     | 0.888 |     0.863 |     0.863 | 0.871 |     1
    
    Macros  |  MEAN | VARIANCE | STD DEV | STD ERR
    --------+-------+----------+---------+---------
    ACC     | 0.966 |  0.00037 | 0.01924 | 0.00837
    ERR     | 0.034 |  0.00037 | 0.01924 | 0.00837
    PPV (P) | 0.922 |  0.00557 | 0.07463 | 0.03332
    TPR (R) | 0.916 |  0.00726 | 0.08521 | 0.03808
    F0.5    | 0.918 |  0.00317 |  0.0563 |  0.0251
    F1      | 0.915 |  0.00232 | 0.04817 | 0.02145
    F2      | 0.915 |  0.00438 | 0.06618 | 0.02966
    J       | 0.847 |  0.00756 | 0.08695 | 0.03886
    TNR     | 0.979 |  0.00051 | 0.02258 |    0.01
    NPV     | 0.979 |  0.00046 | 0.02145 | 0.00949
    AUC     | 0.947 |  0.00154 | 0.03924 | 0.01761
    MCC     | 0.897 |  0.00342 | 0.05848 | 0.02608
    

Scope

Generators: .NET.NET FrameworkJavaAppleAndroidAngular
Connectivity:  Online

Availability

This procedure is available as of GeneXus 16 upgrade 6.

See also



Last update: April 2024 | © GeneXus. All rights reserved. GeneXus Powered by Globant